1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/**
******************************************************************************
* @file spi.c
* @author CMS Application Team
* @version Vx.x.x
* @date 24-April-2022
* @brief This file provides firmware functions to manage the following
* functionalities of the Serial Peripheral interface (SPI):
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
@endverbatim
******************************************************************************
* @attention
*
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "spi.h"
#include "cgc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SPI_Private_Functions
* @{
*/
NSS_FUNC_T NSS;
/**
* @brief De-initialize the SPI peripheral registers to their default reset values.
* @note None
* @retval None
*/
void SPI_DeInit(SPI_Type* SPIx)
{
if(SPIx == SPIHS0)
{
CGC_PER2PeriphClockCmd(CGC_PER2Periph_SPIHS0, DISABLE);
}
else if(SPIx == SPIHS1)
{
CGC_PER2PeriphClockCmd(CGC_PER2Periph_SPIHS1, DISABLE);
}
}
/**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the SPI_InitStruct.
* @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
* contains the configuration information for the specified SPI peripheral.
* @retval None
*/
void SPI_Init(SPI_Type* SPIx,SPI_InitTypeDef* SPI_InitStruct)
{
uint32_t tmpreg = 0;
/* Check the SPI parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
/*---------------------------- SPI Clock gate control enable -----------------*/
if(SPIx == SPIHS0)
{
CGC_PER2PeriphClockCmd(CGC_PER2Periph_SPIHS0, ENABLE);
}
else if(SPIx == SPIHS1)
{
CGC_PER2PeriphClockCmd(CGC_PER2Periph_SPIHS1, ENABLE);
}
/*---------------------------- SPI SPIM flag clear ---------------------------*/
SPIx->SPIM &= ~(SPI_FLAG_RXNE);
SPIx->SPIM &= ~(SPI_FLAG_RUNNING);
/*---------------------------- SPI SPIC Configuration ------------------------*/
/* Get the SPIC value */
tmpreg = SPIx->SPIC;
/* The SPI Master or Slave mode selected by clock setting */
if (SPI_Mode_Master == SPI_InitStruct->SPI_Mode)
{
tmpreg |= SPI_InitStruct->SPI_BaudRatePrescaler;
}
else
{
/* When SPI mode is slave, select the ext clock */
tmpreg |= SPI_BaudRatePrescaler_Ext;
}
/* SPI_Clock_Polarity setting */
tmpreg |= SPI_InitStruct->SPI_CPOL;
/* SPI_Clock_Phase setting */
tmpreg |= SPI_InitStruct->SPI_CPHA;
/* Set the SPIC value */
SPIx->SPIC = tmpreg;
/*---------------------------- SPI SPIM Configuration ------------------------*/
/* Get the SPIM value */
tmpreg = SPIx->SPIM;
tmpreg |= SPI_InitStruct->SPI_DataSize;
tmpreg |= SPI_InitStruct->SPI_NSS;
tmpreg |= SPI_InitStruct->SPI_FirstBit;
/* Set the SPIM value */
SPIx->SPIM = tmpreg;
}
/**
* @brief Enables or disables the specified SPI peripheral.
* @param NewState: new state of the SPI peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void SPI_Cmd(SPI_Type* SPIx,FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected SPI peripheral */
SPIx->SPIM |= (uint32_t)SPI_SPIM_SPIE_Msk;
if(NSS.Active)
{
NSS.Active();
}
}
else
{
/* Disable the selected SPI peripheral */
SPIx->SPIM &= (uint32_t)~((uint32_t)SPI_SPIM_SPIE_Msk);
if(NSS.Inactive)
{
NSS.Inactive();
}
}
}
/**
* @brief Configures the data size for the selected SPI.
* @param SPI_DataSize: specifies the SPI data size.
* This parameter can be one of the following values:
* @arg SPI_DataSize_16b: Set data frame format to 16bit
* @arg SPI_DataSize_8b: Set data frame format to 8bit
* @retval None
*/
void SPI_DataSizeConfig(SPI_Type* SPIx,uint8_t SPI_DataSize)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DATASIZE(SPI_DataSize));
/* Clear DLS bit */
SPIx->SPIM &= (uint32_t)~((uint32_t)SPI_SPIM_DLS_Msk);
/* Set new DLS bit value */
SPIx->SPIM |= (uint32_t)SPI_DataSize;
}
/**
* @brief Selects the data transfer direction in bidirectional mode for the specified SPI.
* @param SPI_Direction: specifies the data transfer direction in bidirectional mode.
* This parameter can be one of the following values:
* @arg SPI_Direction_Tx: Selects Tx transmission direction
* @arg SPI_Direction_Rx: Selects Rx receive direction
* @retval None
*/
void SPI_BiDirectionalLineConfig(SPI_Type* SPIx,uint8_t SPI_Direction)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_DIRECTION(SPI_Direction));
if (SPI_Direction == SPI_Direction_TxRx)
{
/* Set the Tx/Rx mode */
SPIx->SPIM |= (uint32_t)SPI_Direction_TxRx;
}
else
{
/* Set the Rx only mode */
SPIx->SPIM &= (uint32_t)SPI_Direction_Rx;
}
}
/**
* @}
*/
/** @defgroup SPI_Group2 Data transfers functions
* @brief Data transfers functions
*
@verbatim
===============================================================================
##### Data transfers functions #####
===============================================================================
[..] This section provides a set of functions allowing to manage the SPI data
transfers. In reception, data are received and then stored into an internal
Rx buffer while. In transmission, data are first stored into an internal Tx
buffer before being transmitted.
[..] The read access of the SPI_SDRI register can be done using the SPI_I2S_ReceiveData()
function and returns the Rx buffered value. Whereas a write access to the SPI_SDRO
can be done using SPI_I2S_SendData() function and stores the written data into
Tx buffer.
@endverbatim
* @{
*/
/**
* @brief Returns the most recent received data by the SPI peripheral.
* @retval The value of the received data.
*/
uint16_t SPI_ReceiveData(SPI_Type* SPIx)
{
/* Return the data in the DR register */
return (uint16_t)SPIx->SDRI;
}
/**
* @brief Transmits a Data through the SPI peripheral.
* @param Data: Data to be transmitted.
* @retval None
*/
void SPI_SendData(SPI_Type* SPIx,uint16_t Data)
{
/* Write in the DR register the data to be sent */
SPIx->SDRO = Data;
}
/**
* @brief Transmits one Byte Data through the SPI peripheral.
* @param Data: Data to be transmitted.
* @retval tmp: Receive the data by transmit.
*/
uint8_t SPI_TransmitByte(SPI_Type* SPIx,uint8_t Data)
{
uint8_t tmp;
/* Write in the DR register the data to be sent */
SPIx->SDRO = Data;
/* Wait the Byte data transmit completed */
while((SPIx->SPIM & ((uint16_t)SPI_SPIM_SPTF_Msk)) != RESET);
/* Receive Byte data */
tmp = (uint8_t)SPI_ReceiveData(SPIx);
return tmp;
}
/**
* @brief Transmits one Byte Data through the SPI peripheral.
* @param Data: Data to be transmitted.
* @retval tmp: Receive the data by transmit.
*/
uint8_t SPI_ReceiveByte(SPI_Type* SPIx)
{
uint8_t tmp;
/* Write in the DR register the data to be sent */
SPIx->SDRO = 0xFF;
/* Wait the Byte data transmit completed */
while((SPIx->SPIM & ((uint16_t)SPI_SPIM_SPTF_Msk)) != SET);
/* Receive Byte data */
tmp = (uint8_t)SPI_ReceiveData(SPIx);
return tmp;
}
/**
* @brief Transmits one Word Data through the SPI peripheral.
* @param Data: Data to be transmitted.
* @retval tmp: Receive the data by transmit.
*/
uint16_t SPI_TransmitWord(SPI_Type* SPIx, uint16_t Data)
{
uint16_t tmp;
/* Write in the DR register the data to be sent */
SPIx->SDRO = Data;
/* Wait the Byte data transmit completed */
while((SPIx->SPIM & ((uint16_t)SPI_SPIM_SPTF_Msk)) != RESET);
/* Receive Byte data */
tmp = (uint16_t)SPI_ReceiveData(SPIx);
return tmp;
}
/**
* @brief Transmits one Word Data through the SPI peripheral.
* @param Data: Data to be transmitted.
* @retval tmp: Receive the data by transmit.
*/
uint16_t SPI_ReceiveWord(SPI_Type* SPIx)
{
uint16_t tmp;
/* Write in the DR register the data to be sent */
SPIx->SDRO = 0xFFFF;
/* Wait the Byte data transmit completed */
while((SPIx->SPIM & ((uint16_t)SPI_SPIM_SPTF_Msk)) != SET);
/* Receive Byte data */
tmp = (uint16_t)SPI_ReceiveData(SPIx);
return tmp;
}
/**
* @brief Checks whether the specified SPI flag is set or not.
* @param SPI_FLAG: specifies the SPI flag to check.
* This parameter can be one of the following values:
* @arg SPI_FLAG_RXNE: Receive buffer not empty flag.
* @arg SPI_FLAG_RUNNING: Communication status flag.
* @retval The new state of SPI_FLAG (SET or RESET).
*/
FlagStatus SPI_GetFlagStatus(SPI_Type* SPIx, uint8_t SPI_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
assert_param(IS_SPI_GET_FLAG(SPI_FLAG));
/* Check the status of the specified SPI flag */
if ((SPIx->SPIS & SPI_FLAG) != (uint16_t)RESET)
{
/* SPI_I2S_FLAG is set */
bitstatus = SET;
}
else
{
/* SPI_I2S_FLAG is reset */
bitstatus = RESET;
}
/* Return the SPI_I2S_FLAG status */
return bitstatus;
}